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1  | INTRODUC TION, RESULTS,  AND 
DISCUSSION

Extensive evidence supports the notion that somatic genome al-
terations are fundamental to aging, not only giving rise to cancer 
but possibly also causing non-cancer, age-related degeneration and 
disease (Kennedy, Loeb, & Herr, 2012; Vijg & Suh, 2013). Indeed, 
one defining characteristic of aging is the accumulation of somatic 

mutations and DNA damaging lesions arising from endogenous or 
environmental agents (Dolle et al., 1997; Martincorena et al., 2015; 
Maslov et al., 2013). Moreover, we have recently shown that DNA 
double-strand breaks (DSBs) are capable of accelerating multi-
ple aging pathologies in otherwise normal, young mice (White 
et al., 2015).

Certain gene families, such as sirtuins and FoxOs, have been 
linked to longevity in model organisms by regulating multiple 
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Abstract
Genomic instability is one of the hallmarks of aging, and both DNA damage and muta-
tions have been found to accumulate with age in different species. Certain gene fami-
lies, such as sirtuins and the FoxO family of transcription factors, have been shown to 
play a role in lifespan extension. However, the mechanism(s) underlying the increased 
longevity associated with these genes remains largely unknown and may involve the 
regulation of responses to cellular stressors, such as DNA damage. Here, we report 
that FOXO3a reduces genomic instability in cultured mouse embryonic fibroblasts 
(MEFs) treated with agents that induce DNA double-strand breaks (DSBs), that is, 
clastogens. We show that DSB treatment of both primary human and mouse fibro-
blasts upregulates FOXO3a expression. FOXO3a ablation in MEFs harboring the mu-
tational reporter gene lacZ resulted in an increase in genome rearrangements after 
bleomycin treatment; conversely, overexpression of human FOXO3a was found to 
suppress mutation accumulation in response to bleomycin. We also show that over-
expression of FOXO3a in human primary fibroblasts decreases DSB-induced γH2AX 
foci. Knocking out FOXO3a in mES cells increased the frequency of homologous re-
combination and non-homologous end-joining events. These results provide the first 
direct evidence that FOXO3a plays a role in suppressing genome instability, possibly 
by suppressing genome rearrangements.
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signaling pathways in response to stress, including DNA damage 
(Guarente, 2011; van der Horst & Burgering, 2007). Genetic vari-
ants found in FOXO3a have been associated with extreme human 
longevity in multiple ethnic backgrounds (Anselmi et al., 2009; 
Broer et al., 2015; Flachsbart et al., 2009; Willcox et al., 2008). 
Foxo3a-deficient mice are viable, yet females display reduced 
ovarian follicle activation, a feature of premature ovarian aging 
(Castrillon, Miao, Kollipara, Horner, & DePinho, 2003; Hosaka 
et al., 2004). FOXO3a has also been shown to stimulate DNA re-
pair in response to oxidative stress (Tran et al., 2002), while other 
studies suggested FOXO3a activates p53 to initiate a pro-apop-
totic program in response to DNA damage (Chung et al., 2012). 
Together, these studies provide evidence for FOXO3a playing a 
role in promoting tissue homeostasis in response to stress, offer-
ing a possible explanation for its role in lifespan extension. Hence, 
we reasoned that involvement of FOXO3a in stress response and 
longevity could rely in part on its ability to maintain genome sta-
bility (Charitou & Burgering, 2013). Here, we directly assessed the 
role FOXO3a plays in maintaining genome stability in response to 
DSBs.

We first tested if expression of FOXO3a and other FoxOs and 
sirtuins found associated with longevity was upregulated at the tran-
script level in response to DNA damage. Using bleomycin, a potent 
inducer of DNA DSBs, primary mouse embryonic fibroblasts (MEFs) 
were treated for up to 24 hr. Our results show that FOXO3a mRNA 
is	upregulated	from	about	6	hr	until	at	least	24	hr	post-treatment;	at	
that time, it was upregulated ~2.2-fold as compared with untreated, 
control cells (Figure 1a, p	<	0.05),	while	SIRT1,	SIRT6,	and	FOXO4	
remained relatively unchanged. To confirm this response was not 
specific for mouse cells, we also tested this regimen with primary 
human dermal fibroblasts (HDFs). Again, FOXO3a mRNA levels 
increased,	but	only	up	until	~1.5-fold	at	6	hr	post-treatment,	after	
which it decreased again (Figure 1b). We also observed upregulation 
of FOXO3a, in response to bleomycin and compared to untreated 
MEFs, in both MEFs and HDFs, at the translational level. In this case, 
we also analyzed the response to other mutagens, that is, neocarz-
inostatin (NCZ), and mitomycin C (MMC), which was similar to the 
response to bleomycin (Figure 1c,d). Together, these results show 

that FOXO3a is upregulated at both the transcriptional and transla-
tional levels in response to DNA damage.

Since FOXO3a increases in response to DNA damage, we wanted 
to ascertain the role that FOXO3a might play in the mutational out-
come arising from DSBs. To do this, we took advantage of a lacZ 
mutational reporter system previously described by our laboratory 
(Boerrigter, Dolle, Martus, Gossen, & Vijg, 1995). Using siRNA, we 
depleted FOXO3a in MEFs harboring the lacZ reporter (Figure 1e), 
then treated them with bleomycin 48 hr after siRNA transfection 
and harvested the cells at 3 days post-treatment, allowing time for 
the damage to be repaired and mutations to become fixed, as we 
have	 shown	 previously	 (Quispe-Tintaya	 et	 al.,	 2016,	 2018).	 Once	
MEFs were harvested, the lacZ-containing plasmid was recovered 
from its integrated state in the genome and transferred into E. coli to 
select for mutations (Garcia et al., 2007). Knockdown of FOXO3a in 
bleomycin-treated MEFs resulted in an increased mutant frequency 
as compared to control siRNA cells (45.9 × 10–5 vs. 31.3 × 10–5; 
Figure 1e). We next characterized the spectra of the mutant lacZ 
plasmids rescued from the MEFs. Of note, mutants showing no size-
change after restriction digestion are considered to be point muta-
tions, while those that do show a size-change are considered genome 
rearrangements (Garcia et al., 2007). All excessive mutations in bleo-
mycin-treated MEFs after FOXO3a knockdown were genome rear-
rangements, as evidenced by ~10% increase of this type of mutation 
as	compared	to	treated	control	MEFs	(82.6%	vs.	72.6%,	respectively;	
Figure 1f). We also performed cellular sensitivity assays to MMC 
and NCZ in FOXO3a-depleted cells, showing that these cells are not 
overly sensitive to these damaging agents (Figure S1a,b). Together, 
these results indicate that FOXO3a deficiency confers susceptibility 
to mutation accumulation but not cell death, specifically genome re-
arrangements arising from DSBs.

Since FOXO3a deficiency can cause an increase in mutation ac-
cumulation, we next asked whether increased FOXO3a could sup-
press mutations. To address this, we overexpressed human FOXO3A 
via lentiviral-mediated transduction into lacZ MEFs (hFOXO3a). 
hFOXO3a was overexpressed in MEFs ~10-fold (Figure 2a) as com-
pared to endogenous FOXO3a as assayed by qPCR; control MEFs 
only expressed sfGFP. MEFs expressing either sfGFP or FOXO3A 

F I G U R E  1   FOXO3a responds to DNA double-strand breaks and mitigates genome rearrangements. (a) MEFs were treated with 1.4 μM 
of	bleomycin	(Bleo)	for	up	to	24	hr.	Expression	of	SIRT1,	SIRT6,	FOXO3a,	and	FOXO4	was	analyzed	in	triplicates	by	qPCR	normalized	to	18s	
rRNA. (b) HDFs were treated with 2.8 μM	of	bleomycin	for	up	to	24	hr.	Expression	of	SIRT1,	SIRT6,	FOXO3a,	and	FOXO4	was	analyzed	in	
triplicates using qPCR and normalized to 18s rRNA. Shown are the mean values ± SD. where n = 3. p-Values were calculated using Student's 
t test. *p < 0.05 (c,d) Western blot of FOXO3a in whole-cell lysates from MEFs (c) and HDFs (d) after treatment with 1.4 μM bleomycin, 
0.5 mg/ml Neocarzinostatin (NCZ) and 50 nM mitomycin C (MMC) for the indicated times. (e) lacZ mutant frequency from the rescue assay 
of either siCtrl or siFOXO3a MEFs treated with or without (control) 1.4 μM bleomycin for 3 days. Values represent the mean mutation 
frequency ± SD where n = 3. Western blot shows levels of FOXO3a knockdown at 48 hr. (f) Spectrum of mutant lacZ plasmids rescued from 
siCtrl or siFOXO3a MEFs with bleomycin. Values are given as the percentage of point mutations or genome rearrangements out of the total 
number of mutants screened, where n = 48 mutant colonies screened from each of the biological triplicates. (g) Generation of a FOXO3a 
knockout clone in mouse ES cells using CRISPR-Cas9 with a single guide RNA targeting the second exon. The selected KO clone had a 
homozygous 8 bp deletion causing a frameshift and a premature stop codon, confirmed by Sanger sequencing. Wild-type (WT) and FOXO3a 
KO cells were then targeted with either DR-GFP or EJ5-GFP constructs. (h) Reporter lines were then transfected with I-SceI or control 
vector and allowed to recover for 3 days before scoring GFP+ repair events using flow cytometry. Experiments were performed in triplicate 
and >20,000 cells analyzed per sample. Values represent the mean percentage of GFP recombinants out of the total number of the parental 
population ± SD. p-values were calculated using Student's t test. ***p < 0.005
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were treated with bleomycin and allowed to recover for 3 days. The 
results showed that bleomycin treated hFOXO3a expressing MEFs 
had a significantly lower mutant frequency than control sfGFP MEFs 
(17.6	×	10–5 vs. 30.4 × 10–5; p < 0.05, Figure 2b). Therefore, FOXO3a 

overexpression acts to suppress bleomycin-induced genome insta-
bility, possibly by reducing erroneous repair of DSBs.

Considering overexpression of FOXO3a is capable of suppress-
ing mutations arising from DSBs induced by bleomycin, we next 
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examined the effect of FOXO3a overexpression on DSB repair 
foci resolution. Here, we treated HDFs, expressing either sfGFP or 
hFOXO3a,	with	bleomycin	for	6	hr	and	analyzed	γH2AX foci at 0, 2, 
8,	16,	and	24	hr	after	treatment	(Figure	2c,d).	There	were	noticeably	
less γH2AX foci in cells overexpressing FOXO3A, a situation that 
persisted 24 hr after treatment, where on average there were about 
half the number of γH2AX foci in LVX-FOXO3a cells as compared to 
control LVX-sfGFP HDFs (p < 0.05; Figure 2d). These results show 
that overexpression of FOXO3a hinders DNA damage foci appear-
ance by potentially accelerating their clearance.

Previous studies have shown activation of FoxO transcription 
factors can antagonize the cell cycle in a cyclin D1-dependent 
manner in immortalized cell lines (Kops et al., 1999; Schmidt 
et al., 2002). Thus, to determine whether mutation accumula-
tion and foci clearance are cell cycle specific, we analyzed the 
cell cycle progression in response to alterations in FOXO3a ex-
pression. In primary MEFs or HDFs where FOXO3a was depleted 
by siRNA, we did not observe any differences in the phases of 
the cell cycle (Figure S1d,f). However, when we analyzed primary 
MEFs overexpressing hFOXO3a, we did observe a slight decrease 

F I G U R E  2   FOXO3a overexpression 
suppresses bleomycin-induced mutations 
and increases clearance of DNA damage 
foci. (a) MEFs were transduced with LVX-
sfGFP or LVX-hFOXO3a. Confirmation of 
hFOXO3a overexpression was performed 
using qPCR. Levels of hFOXO3a 
overexpression were compared with 
endogenous mouse FOXO3a in the LVX-
sfGFP MEFs and normalized to mouse 
Gapdh. (b) lacZ mutant frequency from 
the rescue assay of either LVX-sfGFP 
or LVX-hFOXO3a transduced MEFs 
treated 1.4 μM bleomycin for 3 days. 
Values represent the mean mutation 
frequency ± SD where n = 3. (c-d) HDFs 
expressing LVX-sfGFP or LVX-hFOXO3a 
were treated with 2.8 μM of bleomycin for 
6	hr.	Cells	were	then	washed	with	PBS	and	
medium replaced. HDFs were fixed at the 
indicated times post-bleomycin treatment 
and stained for γH2AX damage foci. (c) 
Representative images. Scale bar = 10 μm 
(d) Quantification of γH2AX foci per 
nucleus. Values represent the mean ± SD 
of foci per nucleus, where >100 nuclei 
were scored per time point per sample. 
p-values were calculated using Mann–
Whitney test. *p < 0.05
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in the S-phase population, 19.9% versus 25.3% in control sfGFP 
expressing cells, which was accounted for by an increase in G0/1 
phase (Figure S1e). Considering these findings, FOXO3a may have 
a slight, species-specific effect on cell cycle regulation, in the con-
text of overexpression, but does not overall drastically alter cell 
cycle progression.

Considering deficiency of FOXO3a gives rise to an increase in ge-
nome rearrangements in response to DSB-induction (Figure 2c), we 
next asked whether FOXO3a functions in a specific DSB repair path-
way, that is, homologous recombination (HR) or non-homologous end 
joining (NHEJ). To test this, we utilized two reporter systems, the DR-
GFP reporter to assay HR and the EJ5-GFP reporter to assay NHEJ 
(Bennardo, Cheng, Huang, & Stark, 2008; Kass et al., 2013). First, we 
knocked out FOXO3a in mouse ES cells by using clustered regularly 
interspaced short palindromic repeats (CRISPR)-Cas9-mediated ge-
nome editing targeted to exon 2 (Figure 1g) (Cong et al., 2013). Using 
this approach, we isolated a clone with a homozygous 8 bp deletion 
in FOXO3a, confirmed by Sanger sequencing (Figure 1g). Next, we 
targeted both DR-GFP and EJ5-GFP reporter systems into wild-type 
and ΔFOXO3a cells and screened for positive integration of both. 
Wild-type and ΔFOXO3a cells containing either DR-GFP or EJ5-GFP 
reporters were then transiently transfected with I-SceI and allowed 
to recover for 3 days before assessed by flow cytometry for GFP+ 
cells. We found that ΔFOXO3a cells had a twofold increase in GFP+ 
recombinants in the HR reporter assay, 3.5% versus 7.4% (Figure 1h). 
In the cells harboring the NHEJ reporter, we also observed a signif-
icant increase in the ΔFOXO3a cells from 2.7% to 4.2% (Figure 1h). 
These results suggest FOXO3a acts to restrain both of these DSB 
repair pathways, possibly suppressing mutagenic repair after a DSB 
is detected but before a repair pathway choice is made.

Taken together, our data indicate that FOXO3a is capable of 
modulating DNA double-strand break repair, possibly making it less 
error prone, to maintain genome stability. This finding is consistent 
with previous evidence that suggest FOXO3a mediates the stress 
response to genomic damage (Brunet et al., 2004; Tran et al., 2002). 
Specifically, our data show that FOXO3a (a) is upregulated in re-
sponse to clastogenic agents, (b) acts as regulator of genome main-
tenance by suppressing mutations, namely genome rearrangements, 
by potentially accelerating DNA damage foci clearance. Our studies 
offer new insight into a previously unknown role for FOXO3a in pro-
moting DNA repair in response to genomic damage. Additional work 
to understand how FOXO3A directly interacts with the DSB repair 
machinery may uncover a novel mechanism to maintain tissue ho-
meostasis in response to genomic stress, ultimately promoting cellu-
lar and organismal longevity.
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