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Inducible aging in Hydra oligactis implicates sexual
reproduction, loss of stem cells, and genome maintenance
as major pathways
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Abstract Freshwater polyps of the genus Hydra do not
age. However, temperature stress induces aging and a
shift from reproduction by asexual budding to sexual
gamete production in a cold-sensitive (CS) strain of
H. oligactis.We sequenced the transcriptome of a male
CS strain before and after this life history shift and
compared changes in gene expression relative to those
seen in a cold-resistant (CR) strain that does not undergo
a life history shift in response to altered temperature. We
found that the switch from non-aging asexual reproduc-
tion to aging and sexual reproduction involves

upregulation of genes not only involved in gametogen-
esis but also genes involved in cellular senescence,
apoptosis, and DNA repair accompanied by a downreg-
ulation of genes involved in stem cell maintenance.
These results suggest that aging is a byproduct of sexual
reproduction-associated cellular reprogramming and un-
derscore the power of these H. oligactis strains to iden-
tify intrinsic mechanisms of aging.

Keywords Hydra oligactis . Transcriptome . Cold-
sensitive . Gametogenesis . Aging . DNA repair

Introduction

Age-related degeneration and death are universal pro-
cesses affecting virtually all metazoans. Yet, among the
simplest of animals, most notably cnidarians, cases of
immortality have been described. For example, individ-
uals of the freshwater cnidarian, Hydra vulgaris, have
been monitored for years and showed no signs of in-
creased age-related mortality or any decrease in repro-
ductive rate. Immortality amongHydra species has been
ascribed to the continuous renewal of somatic cells from
stem cells (Martinez 1998). However, one strain of
Hydra oligactis undergoes aging under certain environ-
mental conditions. Specifically, when transferred from
the standard maintenance temperature of 18 to 10 °C
this strain of H. oligactis showed multiple symptoms of
aging, including Gompertzian increasing mortality, de-
creasing reproductive rate, and somatic degeneration
and functional decline in prey capture and spontaneous

https://doi.org/10.1007/s11357-020-00214-z

Shixiang Sun and Ryan R. White are co-first authors.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s11357-020-00214-z) contains
supplementary material, which is available to authorized users.

S. Sun :R. R. White : Z. Zhang : J. Vijg
Department of Genetics, Albert Einstein College of Medicine,
Bronx, NY 10461, USA

K. E. Fischer : S. N. Austad (*)
Department of Biology, University of Alabama at Birmingham,
Birmingham, AL 35294, USA
e-mail: austad@uab.edu

J. Vijg (*)
Center for Single-Cell Omics, School of Public Health, Shanghai
Jiao Tong University School of Medicine, Shanghai, China
e-mail: jan.vijg@einsteinmed.org

Present Address:
R. R. White
Laboratory of Genome Maintenance, The Rockefeller University,
New York, NY 10065, USA

(2020) 42:1119–1132GeroScience

Published online: 23 June 2020/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-020-00214-z&domain=pdf
http://orcid.org/0000-0002-8457-9595
https://doi.org/10.1007/s11357-020-00214-z


movements (Yoshida et al. 2006). The correlation of
aging with sexual reproduction has also been reported
for other cnidarians and even for unicellular protozoa
(Petralia et al. 2014). It is possible that an increased
production of germ cells leads to a compensatory de-
cline in the production of differentiated somatic cells
from the same stem cell pool.

Sexual reproduction appears to often be related to
environmental stress. Indeed, under benign environ-
mental conditions, Hydra species mainly reproduce by
asexual budding and do not undergo detectible gameto-
genesis (Martinez 1998; Schaible et al. 2015). Sexual
reproduction, as defined by increased production of
sperm and/or eggs from interstitial stem cells, can be
induced in Hydra by environmental stressors such as
food shortage, crowding, or low temperature, much like
the conditions that accompany the beginning of winter
(Littlefield et al. 1991). We were interested in the pos-
sible effect of this transition from a mainly vegetative
state into a sexual state, on transcriptional regulation
within cells of the organism. For this purpose, we ex-
amined a male laboratory strain of the species
H. oligactis that is cold-sensitive (CS), that is responds
to cold temperature by initiating aging. In addition to the
signs of aging described above, this strain also exhibits
disorganization of epithelial cell myofibers, deteriora-
tion of the apical nervous system, and due to loss of
interstitial stem cells, generalized organ atrophy
(Tomczyk et al. 2019; Tomczyk et al. 2015). We com-
pared the transcriptome of the CS strain at both 18 and
10 °C with a closely related, cold-resistant (CR)
H. oligactis strain that does not undergo these life his-
tory shifts when transferred to colder temperatures for
the insight they might provide into mechanisms of po-
tential immortality and prevention of aging. The results
indicate a switch in transcriptional emphasis from re-
generation to sexual reproduction and increased somatic
maintenance.

Results

We performed directional deep total RNA sequencing
(> 38 M reads per sample) on 3 individual hydras from
CS and CR strains at both 18 and 10 °C (Fig. S1a). The
genomes of three Hydra species (H. magnipapillata
[now called H. vulgaris] , H. oligactis , and
H. viridissima) have been sequenced (Chapman et al.
2010; Vogg et al. 2019). However, sequence differences

between H. oligactis and the other two species
constrained the possibility of using their genomes as
reference sequences. Moreover, the number of scaffolds
in the H. oligactis genome was relatively high at
447,337, suggesting it would be a limiting factor in
identifying full coding regions. Hence, to analyze our
data, we first assembled a de novo H. oligactis tran-
scriptome with quality-filtered reads from all sequence
samples (Fig. S1b). The initial transcriptome assembly
yielded 421,568 contigs with a median length of 289 bp
and an N50 of 418 bp.

To reduce potential small non-coding RNAs, we
removed contigs shorter than 400 bp and contigs with-
out any similarity to the NCBI non-redundant database
(Blastx, e-value < 1e−5), as done in previous studies
(Petersen et al. 2015), thereby retaining only contigs
with protein-coding potential. To further reduce tran-
scriptome complexity, we extracted and retained only
the longest isoform for each candidate gene in the
contigs, resulting in a total of 31,585 contigs with a
median length of 796 bp and N50 of 1575 bp. Notably,
this number is in a similar range and has 93.4% homol-
ogy compared with published contigs for other Hydra
transcriptomes (Table S1) (Chapman et al. 2010; Juliano
et al. 2014; Petersen et al. 2015) (Fig. 1a). These results
indicate high genetic similarity among these Hydra
species despite 60–100 MY divergence (Martinez
et al. 2010; Schwentner and Bosch 2015), especially
compared with 85% homology between human and
mouse with a similar divergence time (Batzoglou et al.
2000; Mouse Genome Sequencing et al. 2002). How-
ever, it also indicated the differences between
H. oligactis and other Hydra species if we consider the
only 95% homology between human and chimpanzee
under 7–10 MY divergence (Britten 2002; White et al.
2009). Phylogenetic analysis confirmed thatH. oligactis
is indeed the outgroup among the other three published
transcriptomes (Fig. 1b) (Hemmrich et al. 2012). In
addition, we found only one spliced leader (SL) RNA
in the H. oligactis transcriptome compared to seven in
H. vulgaris. As the SL RNAs are used to resolve poly-
cistronic transcripts into individual units and to add 5′
cap structures for increasing mRNA stability and trans-
lation rate, the lesser diversity of SL RNAs in
H. oligactis suggests a lesser capacity to cope with stress
in this particular species (Michaeli 2011). In plotting the
length distribution of the contigs, we found 99.8% of the
assembled transcripts were shorter than 10 kb (Fig. 1c).
To assess the quality of our assembly without effects of
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lowly expressed contigs, we calculated the N50 of 90%
of the expressed sequences (Ex90N50), as 2255 bp,
indicating that highly expressed sequences are well
assembled (Fig. 1d).We annotated our contigs to human
protein (GRCh38.p12, GCF_000001405.38) in order to
assign putative gene function to the contigs in our tran-
scriptome assembly. Finally, we performed BUSCO
analysis for transcriptome completeness (Simao et al.
2015). We compared our assembly to the metazoan core
orthologs (n = 978) and found 93.9% (n = 919) and
2.9% (n = 28) of orthologs were completed and
fragmented, respectively, illustrating a high degree of
completeness.

To search for global changes in gene expression
during the temperature shift in CS and CR strains, we
performed differential expression analysis against our
31,585 contigs. As expected, the temperature shift had a
greater expression effect in the CS, relative to the CR,
strain (Fig. 2a). Specifically, we found ~ 1500 differen-
tially expressed contigs (DECs) in the CS strain due to
the temperature shift (approximately one-third more of
these upregulated than downregulated). By contrast, we
found only 103 DECs in response to the temperature
shift in the CR strain. Indeed, comparison of the two
strains at the colder 10 °C temperature revealed ~ 2600
DECs, most with higher expression in the CS strain. At
the higher temperature, we found ~ 1100 DECs, most of
which were higher in the CR strain. In sum, these results
indicate substantial differences in gene expression be-
tween the two strains, even at the standard laboratory
temperature of 18 °C. These results were confirmed by
unsupervised hierarchical clustering analysis using the
DECs, which showed that the gene expression profile in
the aging CSHydra at 10 °C was distinct from the other
three groups of budding, non-aging animals (Fig. 2b).

We extracted the overlap of DECs between a com-
parison of CS animals at both temperatures and a com-
parison of CS and CR animals both at 10 °C; these two
comparisons, therefore, were between non-aging and
aging individuals. This yielded a total of 1131 DECs,
which we reasonedwould be informative with respect to
the temperature-induced life history switch (Fig. 2c).
Gene ontology (GO) analysis of the 884 upregulated
and 247 downregulated DECs showed a significant
enrichment for biological processes related to the repro-
ductive switch from asexual budding to meiotic gamete
production (Fig. 2d; Table S2). For instance, the enrich-
ment in “reproduction” and “cell cycle” points towards a
shift to gametogenesis (Table S3). In addition, in

“reproduction” we observed upregulation of meiosis-
related genes contributing to recombination in sper-
matogenesis (Table S3). The upregulation of these
genes accompanying meiotic gamete production con-
firms a long-standing hypothesis that genetic diversity
such as that generated by sexual reproduction is most
advantageous under changing environmental conditions
such as the onset of fall and winter (Williams 1975).

We also observed gene expression changes related to
the shift from a non-aging to an aging phenotype. Spe-
cifically, in the CS strain when undergoing aging at
10 °C, we saw upregulation of CCNA1 (Cyclin A1),
CDC14B, and FGF2, all pointing to the emergence of
cellular senescence (Table S4) (Davalos et al. 2010;
Huang et al. 2016; Su 2006; Takahashi et al. 2012).
FGF2 has been shown to be up-regulated in senescent
cells and are involved in the senescence-associated se-
cretory phenotype (SASP) (Coppe et al. 2010). Interest-
ingly enough, the process of cellular senescence has
never previously been suggested in any Hydra species.

A major driver of cellular senescence is DNA damage
due to reactive oxygen species (ROS) production, an
inescapable byproduct of oxidative metabolism (Sohal
and Weindruch 1996). Expression changes in the CS
strain, e.g. TRAP1 and H2AX (H2AFX), during the shift
to 10 °C point towards increased ROS (Chen et al. 2015a;
Lisanti et al. 2014) (Table S5). We also noticed that in
ROS-related genes, SOD genes and CAT are upregulat-
ed, whereas most GPX genes are downregulated (Fig.
S2). SOD genes convert superoxide anion to hydrogen
peroxide and molecular oxygen, while CAT and GPX
genes breakdown the hydrogen peroxide to the water and
molecular oxygen in peroxisomes breakdowns the mito-
chondria, respectively (Ighodaro and Akinloye 2018).
The changes of these genes indicated high levels of
ROS, especially in mitochondria, suggesting that senes-
cence and the SASP are activated as part of the switch
from non-aging to aging. This was confirmed by the
observed upregulation of genes involved in genome
maintenance (Table S6), a protective mechanism in the
sexual reproduction phase to delay senescence.

Conversely, we also looked for possible differences
that could explain the resistance of the CR strain to cold-
induced aging and a shift to sexual reproduction. We
observed that one contig, assigned as cold-inducible
RNA binding protein (CIRBP), displayed reduced ex-
pression in both CR and CS strains (Fig. S3). However,
the reduction was significantly greater in the CS than in
the CR strain (2.3-fold vs 1.2-fold, respectively). Hence,
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it is plausible that relatively high expression of the
CIRBP orthologous contig contributes to senescence
bypass in this cold-resistant strain (Lleonart 2010).

To understand the global response of gene expression
changes during the temperature shift, we performed
weighted gene co-expression network analysis
(WGCNA) on the annotated contigs (see Experimental
Procedures) (Langfelder and Horvath 2008). We find
four modules highly correlated with sexual reproduction
and aging—black, red, blue, and green—while one
module—brown—was highly correlated with asexual

budding and the absence of aging (Fig. 3a, b). The
sexual reproduction/aging modules were highly
enriched for genes related to sperm production and
motility (black and red modules) as well as cell cycle
transition, DNA replication, and recombination (green
and blue modules). The brown module associated with
budding/non-aging was highly enriched for proteins
regulating extracellular matrix, such as WNT and
MMP genes (Table S7). Thus, there are clear gene sets
that drive the observed sexual reproduction/aging phe-
notype during the temperature shift.
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Next, we used gene set enrichment analysis (GSEA)
to test for possible enrichment of pathways involved in
aging, using the Molecular Signatures Database
(MSigDB) hallmark, GO, KEGG, and REACTOME
gene sets (Liberzon et al. 2015). We first compared the
CS strain when aging at 10 °C with the three other
strain/conditions in which aging was lacking and ob-
tained 346 upregulated and 405 downregulated gene
sets (Table S8). Reassuringly, given the development
of male gonads accompanying aging in this experimen-
tal system, our results indicated upregulation of
spermatogenesis-related gene sets in the sexual
reproduction/aging hydra, including “GO sperm part,”
“GO spermatid differentiation,” “GO sperm flagellum,”
and “GO sperm motility” (Fig. 3c), which is consistent
with the results of the DEC analysis and WGCNA
described above. With respect to relevance to aging,
we also observed upregulation of DNA repair gene sets,
including “GO DNA repair,” “GO double-strand break
repair,” “GO nucleotide excision repair DNA damage
recognition,” GO DNA synthesis involved in DNA
repair,” and “GO recombinational repair” (Fig. 4a). No-
tably, we observed that “REACTOME regulation of
apoptosis” and “REACTOME apoptosis” gene sets
were upregulated in aging CS Hydra (Fig. 4b) as was
“Hallmark E2F targets.” The latter are critical regulators
of autophagy and apoptosis (Chen et al. 2015b). The
enrichment map of analyzed GSEA gene sets showed
that a cluster of spermatogenesis gene sets was linked to
DNA repair gene sets through sets like “GO synapsis”
and “GO homologous chromosome regulation” (Fig. 5).
We also observed links between DNA repair-related
gene sets and apoptosis-related sets, for example, gene
sets of “GO DNA replication” and “REACTOME syn-
thesis of DNA.”We conclude that upregulation of sper-
matogenesis is inherently associated with increased
DNA repair.

A hallmark gene set found downregulated in CS at
10 °C is “Hallmark IL6/JAK/STAT3 signaling” (Fig.
S4a). JAK/STAT3 signaling regulated by IL6 is consid-
ered one of the key pathways in regulating multiple
types of stem cell self-renewal (Bharti et al. 2016;
Chen et al. 2015b; Hirano et al. 2000). Also, the results
showed that in CS at 10 °C the “GO stem cell differen-
tiation,” “GO stem cell proliferation,” and “GO regula-
tion of notch signaling pathway” gene sets are all down-
regulated, which likely weakens somatic cell renewal
capacity and possibly promoting senescence. This con-
clusion was further confirmed by the observed

downregulation in CS at 10 °C of FOXO3 (Fig. S4b).
FOXO3 appeared to be a critical regulator of stem cell
maintenance in immortal Hydra (Boehm et al. 2012).
Other key markers of stem cell maintenance, such as
POU5F1 (OCT3/4) and WNT1, were also significantly
downregulated (Fig. S4b) (Masui et al. 2007; Williams
et al. 2010).

Discussion

These present results provide the first comprehensive
assembly and analysis of the H. oligactis transcriptome,
comparing the non-aging, asexually reproducing condi-
tion with the aging, sexually reproducing condition.
Collectively, our data demonstrate that the switch from
a non-aging to an aging phenotype is accompanied by
activation of a series of molecular pathways known to
be characteristic for aging metazoans, such as cellular
senescence, ROS-induced damage, and lack of stem cell
maintenance. Our data also highlight pathways of inter-
est for understanding the exceptional mechanisms by
which Hydra achieve potential immortality. We find
that upregulation of sexual reproduction pathways in-
duces global changes in gene expression, particularly
related to gamete production and DNA recombination,
which may drive these “canonical” aging phenotypes.

One of the major findings of this study showed that a
large number of DECs and pathways are associated with
sexual reproduction and aging phenotypes between the
non-aging and aging-inducible strain, while there are
fewer DECs between non-aging and aging strains under
pressure of temperature shift. Based on these findings,
we propose that under benign conditions,Hydra display
exceptional maintenance of their three stem cell types,
viz., ectodermal and endodermal epithelial stem cells
and interstitial stem cells, continually replacing all dif-
ferentiated somatic cells (Fig. 6) (Tomczyk et al. 2015).
However, the CS H. oligactis strain under sufficient
environmental duress, enough to threaten somatic sur-
vival, undergoes a complete shift of stem cell activity
away from maintenance to exclusive support of sexual
reproduction, and by doing so maximizes gamete pro-
duction at the cost of somatic aging and eventual
death—a classical display of the disposable soma phe-
nomenon (Kirkwood and Austad 2000). Sexual repro-
duction in the CS strains elicits persistent DNA damage
induced by ROS, and the subsequent increase in DNA
repair may not provide sufficient protection to prevent
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somatic mutation accumulation, loss of genome stabili-
ty, cellular senescence, and cell death of the soma
(Milholland et al. 2017). The CR strain, as well as other
Hydra species, does not show such adaptive shifts, for
unknown but possibly ecological and evolutionary rea-
sons (Hemmrich et al. 2012).

Although our studies showed multiple pathway
alterations induced by the temperature shift and how
these pathways might contribute to aging phenotypes,
it should be noted that the present study only included
one specific environmental change, i.e., the tempera-
ture shift, within each of the CS and CR strains.
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Moreover, we noted the caveat that RNA was isolated
from whole-bodies of hydra rather than individual
t i ssues . We note that as we sampled these
transcriptomes at a single time point, we have gener-
ated a snapshot rather than a full description of the

shift from nonaging to aging phenotypes. As a result,
we can only speculate that DNA repair mainly takes
place in the germline given the upregulation of
RAD51 family and MutS homologs (MSH4 and
MSH5), which are essential for homologous
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recombination and DNA mismatch repair during
spermatogenesis (Marcon and Moens 2005).

This first comprehensive H. oligactis transcriptome
is a promising start to understanding how genome reg-
ulation can favor aging versus nonaging. Recent ad-
vances in single cell sequencing, combined with serial
sampling of these strains over the nonaging to aging
transition, will allow greater understanding of the im-
portance of differential transcriptional regulation among
different cell types (Covington et al. 2008; de Soysa
et al. 2019). It would also be of interest to investigate the
transcriptomics of similar life history transitions in re-
sponse other environmental stressors such as food sup-
ply and crowding. Understanding the complex mecha-
nisms behind each age-inducible stimuli would shed
light on the dramatic changes occurring during the tran-
sition process towards canonical aging.

Our study confirms the strong relationships between
aging phenotypes and sexual reproduction, which is also
reported in various animals like nematodes, fruit flies,
rodents, and primates (Harvanek et al. 2017). Further
research could focus on the exact nature of transitions
from activating sexual reproduction and enhancing
DNA repair capability to reducing stem cell renewal
and inducing cell senescence under certain environmen-
tal stressors, like the temperature shift.

Experimental procedures

Sample growth and collection

CR and CS Hydra oligactis were obtained from Brigitte
Galliot’s laboratory in Geneva, Switzerland, and main-
tained in standard hydra medium at 18 °C ± 0.5 °Cwhile
being fed freshly hatched brine shrimp (Artemia sp.)
larvae 3–5 times per week. To induce gametogenesis,
animals of both strains were transferred to 10 °C ±
0.3 °C medium at which time feeding was reduced to
2 times per week. At 10 °C, the vast majority of CR
strain animals ceased budding and began forming testes;
the vast majority of CR strain animals continued bud-
ding although at a reduced rate.

Library preparation and sequencing

As soon as testes were fully formed, we flash-froze
single hydra, homogenized them in Qiazol, and purified
the RNA using the miRNeasyMicro Kit (Qiagen). Total

RNA quality was assessed using an Agilent 2100
Bioanalyzer; only samples with a RIN greater than 8.0
were used for subsequent analysis. Total RNA was
treated with DNaseI, and again column purified using
the miRNeasy Micro Kit (Qiagen). Ribosomal RNA
was depleted using the Ribo-Zero Magnetic Gold Kit
(Epicenter), followed by ethanol precipitation. Depleted
RNA was converted to cDNA using the SuperScript IV
First-Strand Synthesis Kit (Invitrogen) with 80 ng ran-
dom hexamers and 50 μM oligo dT, and subsequently
ethanol precipitated. Single-stranded cDNA was con-
verted to dsDNA by DNA polymerase I using dU/
VTPs (10 mM). Samples were then fragmented in 1X
TE pH 8.0 to 200–300 bp using Covaris. Samples were
then purified using the MinElute PCR purification kit
(Qiagen). Fragmented samples underwent standard end-
repair, dA-tailing, and adapter ligation using Illumina
TruSeq adaptors for multiplexing. Adaptor-ligated
cDNAwas treated with uracil-DNA glycosylase follow-
ed by enrichment PCR using NEBNext HiFi polymer-
ase (New England Biolabs) for 18 cycles. Libraries were
size selected for 150–600 bp on a 2% low-melt ultra-low
range agarose gel stained with SYBRGold (Invitrogen).
Purified libraries were then clustered (6 samples per
flow cell lane) and sequenced on an Illumina
HiSeq2000 for 100 bp paired-end reads.

Transcriptome de novo assembly

Raw reads were first trimmed by Trim Galore (version
0.4.1) to clip adapter and low-quality bases at 3′ ends.
To avoid content biases in 5′ ends, we removed the first
7 bp from each read. The quality of reads before and
after trimming was assessed using FastQC (version
0.11.4). To generate a de novo Hydra oligactis tran-
scriptome, trimmed reads from all samples were com-
bined and assembled utilizing Trinity (version 2.2.0)
(Haas et al. 2013), including a total of 289 M paired-
end reads. The cut-off for transcript length was set to
400 bp to avoid short potential reading frames. The
transcripts were then compared to the NCBI non-
redundant (Nr) database with Blastx (version ncbi-
blast-2.6.0+: options: -max_target_seqs 20, -evalue
1e–5, -outfmt 5) to identify probable protein-coding
transcripts. Homology search was performed using
Tblastx (-evalue 1e–5). To construct the phylogenetic
tree, we first extracted the long open read frames (ORFs)
using TransDecoder (version 5.3.0) and identified ho-
mology of the ORFs to known proteins via Blastp (-
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max_target_seqs 1, -evalue 1e-5, -outfmt 6) to UniProt
(Release 2018_04) (UniProt Consortium T 2018) and
HMMscan (version 3.1b2) (Finn et al. 2011) to Pfam
(version 31.0) (El-Gebali et al. 2019).We next predicted
likely coding regions by integrating the Blastp and Pfam
results with TransDecoder (–single_best_only) and
identified single copy orthologs between the
transcriptomes using Proteinortho (version 5.16b)
(Lechner et al. 2011). The orthologous contigs were
aligned using MAFFT (version 7.407) (Nakamura
et al. 2018) and trimmed using Gblocks (version
0.91b) (Castresana 2000). The concatenated sequences
were then used for phylogenetic tree construction with
RAxML (version 8.2.4) (Stamatakis 2014) and visual-
ized using the ggtree package (Yu et al. 2018). We
examined published seven SL sequences in our 31,585
contigs using Blat (version 35) (Kent 2002). Transcript
quantification was performed by mapping trimmed
reads to the assembled de novo transcriptome using
bowtie2 (version 2.2.3) (Langmead and Salzberg
2012) and gene expression calculated using RSEM
(version 1.3.0) as Trinity pipeline. ExN50 values were
then obtained and plotted using scripts from Trinity. For
assessment of transcriptome assembly completeness, we
used BUSCO v3 (Simao et al. 2015) with the metazoan
orthologs (metazoa_odb9).

Functional annotation

Clean reads were mapped to the final transcriptome
by utilizing STAR (version 2.6.0c; options: –
o u t F i l t e r S c o r e M i n O v e r L r e a d 0 . 2 5 , –
outFilterMatchNminOverLread 0.25) (Dobin et al.

2013). The counts of reads for each contig were ex-
tracted by HTSeq (version 0.6.1) (Anders et al. 2015).
Contig expression levels were normalized to FPKM
under a TMM method, and differential contig expres-
sion analysis was performed using edgeR (Robinson
et al. 2010). To obtain the GO annotation, we anno-
tated predicted coding regions using InterProScan
(version 5.29–68.0; options: -dp, -iprlookup, -
goterms) (Jones et al. 2014) and mapped GO annota-
tions to assembled contigs based on Blastx results to
Nr. All GO annotations were then merged by
Blast2GO (version 5.2.0; cut-off for e-value hit: 1e
−6) (Conesa et al. 2005). The differentially expressed
contigs were then enriched using clusterProfiler (Yu
et al. 2012).

To interpret the function of assembled contigs, we
annotated hydra contigs with human proteins
(GRCh38.p12, GCF_000001405.38). The orthologs
between predicted coding regions of hydra contigs
and human proteins were identified in Proteinortho,
resulting in ~ 5000 orthologs. We also aligned hydra
contigs with human proteins using Blastx (-e-value
1e-5, -max_target_seqs 500; top 20 genes) to show
the probable orthologous genes. To perform the gene
set functional enrichment, the hydra contigs unex-
pressed (FPKM < 1) in any samples were removed,
whereas duplicate annotations were filtered based
first on blast e-values and second on the sum of
expression values in all samples. Finally, we obtained
7730 human gene annotations and performed gene set
enrichment analysis with GSEA (version 6.2)
(Subramanian et al. 2005). The enriched gene set
was identified as significant if FDR q-value was

18oC 10oC

Stem cell 
maintenance

Sexual 
reproduction

Cellular 
senescence

ROS-induced 
damage

Sperm 
production

DNA 
repair

Exhaust after a specific time period

Fig. 6 Schematic diagram of “trade-off” model. The trade-off
between genetic evolutionary advantage and cellular maintenance
in hydra is impacted by environmental duress, such as cold stress.
Under such conditions, maintenance processes such as DNA

repair and sperm production will be exhausted after a specific time
period since the temperature shift.Hydra will die due to processes
such as cellular senescence and ROS-induced damage.
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smaller than 0.25. Enrichment plots were performed
u s i n g R t o o l b o x ( h t t p s : / / g i t h u b .
com/PeeperLab/Rtoolbox). The enrichment map of
GSEA results was obtained in Cytoscape (version
3.6.1; nominal p < 0.05, FDR q-value < 0.25, overlap
cut-off: 0.5) (Shannon et al. 2003).

Weighted gene correlation network analysis

All contigs in GSEA (with human gene annotation)
were used to identify groups of co-regulated genes in
an unsupervised way using WGCNA (Langfelder and
Horvath 2008). R2 cut-off of 0.9 was used in the mini-
mum power tested. A signed gene co-expression net-
work was constructed with a soft threshold power of 30
and using biweight mid-correlation. The cutoff for
merging modules was set as 0.25. Minimum genes per
module was 30. The Pearson correlations between mod-
ule eigengenes and traits were checked, and student
asymptotic p-values were calculated. For chosen mod-
ules, GO enrichment analysis was performed in
clusterProfiler.
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